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Abstract

A new COD correction method suitable for orbit
feedback was already proposed[1]. This is the eigenvector
method with constraints, which can have both functions
of global and local COD corrections. In this paper, we
will present the effects of errors in beam position
monitor(BPM) reading and steering magnet setting on the
orbit correction. We will show analytical expressions of
these errors. In addition, we will show results of computer
simulations for the VSX light source[2], a VUV and soft
X-ray high-brilliance synchrotron radiation source being
planned at the University of Tokyo, and compare them
with the analytical results.

1  INTRODUCTION
Photon beam positions or closed orbits in synchrotron

radiation sources are usually stabilized by global and/or
local feedbacks. The global feedback efficiently corrects
COD around the whole ring with the harmonic method,
the least squares method or the eigenvector method, while
the local orbit feedback tightly fix the beam position at a
photon source point by the local orbit bump method.
However, the two feedbacks may interfere with each
other and deteriorate the orbit stability when they are
operated at the same time. We proposed a new correction
method, the eigenvector method with constraints, which
can have both functions of global and local COD
corrections. Furthermore, the computer simulations were
already carried out in only cases without any errors[1].
Since the orbit correction suffers the effect of errors in
BPM reading and steering magnet setting, it is practical to
examine the effects of such errors on COD corrections. In
this paper, several such error effects are discussed and
computer simulations are carried out.

2  ERROR ANALYSIS

2.1  A New COD Correction Method

In this sub-section, a new COD correction method is
reviewed. The measured COD at BPMs, the kick angle
strengths of the steering magnets and the response matrix

are denoted by y ,θ  and R respectively. Here, the

numbers of BPMs and steering magnets used in the
correction are M and N, and R is a MxN matrix. The
residual vector of COD is defined by

yR +θ≡∆ . (1)

A new COD correction method is the eigenvector
method with constraints. Here, the constraint conditions
are given by

) N,1,i ( 0zC Ci
T
i ��==+θ⋅ , (2)

where NC means the number of constraint conditions, and
the superscript “T” stands for the transposed matrix.

We minimize the norm of ∆  in Eq.(1) under the
constraint conditions Eq.(2) using Lagrange’s method of
indeterminate multipliers. After the straightforward
calculations, the kick angle strengths of steering magnets
using a new COD correction method are obtained by

zDyB −=θ , (3)

where RRA T= , CACP 1T −= ,
T1T111 R)ACCPAA(B −−−− +−= , (4)

11CPAD −−= , (5)
and the superscript “-1” stands for the inverse matrix. The
inverse matrix A-1 in Eq.(4) can be expressed by the NV

eigenvectors and eigenvalues used for the COD
correction as follows,

∑
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where iv  and iλ  are the i-th eigenvector and eigenvalue
of the real symmetric matrix A, respectively.

If iz  in Eq.(2) is taken as the beam position observed
at an arbitrarily selected BPM and C as the corresponding
part of the response matrix R, the beam position can be
fixed at zero.

2.2  Errors in BPM Reading

In this sub-section, we consider the effects of BPM
errors. In order to simplify the discussion, first of all we
examine separately the following 2 cases.

(i) In case of 0z =  and 0y ≠ .
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In this case, Eq.(3) is replaced by yB=θ . Here, yδ  is

BPM errors and θδ  is steering setting errors caused by

yδ . If COD errors caused by BPM errors are denoted by

cδ , we can obtain,

yBδ=θδ , (7)

θδ=δ Rc . (8)
When BPM reading errors have a gaussian distribution

with the standard deviation BPMσ , it can be expressed
using Eqs.(7) and (8) as follow,

( ) 2
BPM

TTT RBRBTrcc σ⋅=δ⋅δ , (9)

where the symbol “< >” and “Tr” mean the average and
the trace of a matrix respectively. If the number of used
eigenvalues and BPMs are denoted by NV and NBPM

respectively, Eq.(9) can be represented by

( ) 2
BPMCV

T NNcc σ⋅−=δ⋅δ (10)

or

2
BPM

BPM

CV2
COD N

NN
σ⋅

−
=σ , (11)

where the symbol “ ¯  ” stands for the mean value.
Eq.(11) shows that the greater number of eigenvalues

is used for correction, the σCOD caused by BPM errors
become worse. The factor (NV-NC) in Eq.(11) can be
interpreted as the effective number of eigenvalue used for
the COD correction.

(ii) In case of 0y =  and 0z ≠ .

In this case, since Eq.(3) is represented by yB−=θ , we
can express

zDδ−=θδ . (12)

If the errors of iz  have a gaussian distribution with the

standard deviation zσ , it can be expressed using Eqs.(12)
and (8) as follows,

( ) 2
z

TTT RDRDTrcc σ⋅=δ⋅δ , (13)

or

( ) 2
z

BPM

1
2
COD N

PTr σ⋅=σ
−

. (14)

Eq.(14) shows that the mean variance of COD varies
in inverse proportion to the number of used BPMs and are
proportional to the variance of z.

In practical, y  and z  are non-zeros because these
are considered as beam position at BPMs. If the
correlation between beam positions at different BPMs
does not exist and z is taken as the beam position, a
variance of COD errors can be expressed by the
summation of (i) and (ii) as follows,

( ) 2
BPM

BPM

1
CV2

COD N

PTrNN
σ⋅

+−
=σ

−

. (15)

2.3  Errors in Steering Magnet Setting

 In this sub-section, we consider the effects of errors in
steering magnet setting. Since the effects of errors do not
depend on a COD correction scheme, the error effects in
this case are completely same as that of an eigenvector
method. If only the steering errors are taken into account,
we can obtain

 θδδθ=δ⋅δ RRcc TTT . (16)
 In the same manner as sub-section 2.2, Eq.(16) can be
rewritten by

 ( ) 2
S

TT RRTrcc σ⋅=δ⋅δ , (17)

 or

 2
S

all

i
i

BPM

2
COD N

1 σ⋅

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
 λ=σ ∑ , (18)

where Sσ  is the standard deviation of steering magnet

steering errors, and ∑
all

i

 means the summation of all iλ ,

which are non-zeros.
Eq.(18) shows that the effects of errors in steering

magnet setting do not depend on the number of
eigenvalues used for the COD correction and the mean
variance of COD varies in inverse proportion to the
number of used BPMs.

 3  RESULTS OF SIMULATION
The VSX project aims at constructing third-generation

synchrotron light source in the Kasiwa campus of Tokyo
University. The 2GeV VSX ring is 388m in
circumference. 14 insertion devices will be installed there.
128 BPMs and 112 steering magnets will be used for
beam orbit feedback.

A computer simulation for the new COD correction
method with BPM or steering errors has been carried out
for the VSX ring. The constraints adopted here are that
the positions at BPMs on the downstream sides of 14
insertion devices are zeros i.e. the number of the
constraints is 14. Figure 1 shows a typical COD before
correction. Here, we assumed that the alignment error of
quadruple magnet has a gaussian distribution with the
standard deviation 50[µm]. Figure 2 shows a COD after
correction without any errors. Here, the symbol “♦”
stands for a beam position at the BPM selected as
constraint and all of them are fixed at zeros.

Figure 3 and 4 show the rms ratio of CODs before and
after correction with BPM reading errors and steering
magnet setting errors respectively.

Figure 3 shows that the greater number of eigenvalues
is used for correction, the CODs after correction become
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worse. In the sub-section 2, the correlation between beam
positions at different BPMs is not taken into account.
However, the result of this simulation gives good
agreement with Eq.(15) as the analytical formulae
qualitatively.

As shown in figure 4, the rms ratio of CODs before
and after correction with steering magnet setting errors
does not depend on the number of used eigenvalues for
correction. This result gives good agreement with Eq.(18)
as the analytical expression.

 4  CONCLUSIONS
 The effects of errors in BPM reading and steering

magnet setting were analyzed, and the computer
simulations were carried out using a new COD correction
method. The results of these computer simulations give
good agreement with the analytical expressions.
According to the effects of BPM errors, a suitable number
of used eigenvalues should be selected in the practical
orbit feedback systems, otherwise the performance of the
correction become worse.

 The effects of errors in response matrix elements, the
error analysis taken account of the correlation between
beam positions at different BPMs and a computer
simulation for the repeated correction are discussed
elsewhere.
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Figure 1: A typical horizontal COD without correction
around the whole ring for the VSX ring.
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Figure 2: A horizontal COD after one turn correction
using a new COD correction method.
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Figure 3: Rms ratio of horizontal CODs before and after
correction with BPM reading errors. Here, σ means σBPM.
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Figure 4: Rms ratio of horizontal CODs before and after
correction with steering magnet setting errors. Here, σ
means σS.
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